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FIIM BOILING HEAT TRANSFER FROM A HORIZONTAL SURFACE AS AN OPTIMAL BOUNDARY VAIUE FROCESS
by Thomas D. Hamill and Kenneth J. Baumeister

Lewis Research Center
National Aeronautics and Space Administration
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ABSTRACT

A theoretical analysis of pool film boiling based on a cellulsr model is presented. The time-averaged
cell configuration is postulated to adjust itself to maximize the rate of heat transfer. Theoretical ex-
pressions for the heat-transfer coefficient, average vapor dome (bubble) radius , and optimum cell diameter
(wavelength) were in close agreement with experiments. As a generalization of this work and others, a
tentative nonequilibrium thermodynamic hypothesis is proposed that nature maximizes the entropy production
in all situations characterized by macroscopic chaos.

AUSZUG

Eine theoretische Analyse einer siedenden Oberfldche auf der Grundlage eines zellenart1gen Modells
wird gegeben. Die zeltgemlttelte Zellenkonfiguration stellt sich vorausse‘bzungsgemass s0 ein dass sie die

Geschwindigkeit der Warmelibertragung maximiert. Ein theoretischer Ausdruck fir die Warmeleltzahl den
Dampfdomradius (Blase) und den optimalen Zellendurchmesser stimmte sehr nshe mit Versuchen ubereln. Als
eine Verallgemeinerung dieser Arbeit wnd anderer wird eine vorlaufige ausgleichslose thermodynamische
Hypothese vorgebracht, namlich dass die Natur die Erzeugung der Entropie in allen durch makroskopisches

Chaos charakterisierten Umsténden maximiert.,

AHHOTAITHAA

Jan TeopeTHuecKHH AHANU3 KHUIEHHA [JEHKH HAa IOPU3OHTAJIbHOM NOBEPXHOCTH B IPEeLINOJOXEHHH
neaanAApHOi Momzeau. IIpeimosaraeTcsa 4UTO ycpeIHeHHAA BO BpeMeHH KoHOUrypanua suefixy camo-
HaCTpaUBaeTCA Ha MAKCHMAJIbLHYO CKODOCTH Tennomnepejnaud. Teoperuueckre BHpaxXeHHA AaA Ko3hdu-—
OUeHTs Temiomeperaud, CpeIHETrO pPajuyca Ny3HpA M ONTHMAJBLHOrO JAHaMETpa IJIUHH BOJHH
AuelKM HAXOLATCA B XODOmMEM COTJIACOBAHMH C DKCIEPHUMEHTAJNbHHMH IaHHuMA. Kax o6obmerue sTOi
H IPYyTHX paboT yCIOBHO IpejiaraeTCA IHIOTEe3a TEePMOLMHAMHYECKO{ HEYDABHOBEMEHHOCTH IPH
KOTOpO# mpHpola caMa MHHUMUBUDYET CO3JaHMe DHTPONMH BO BCEX CJAYUaAX MAKPOCKOIHUECKOIO

xaoca.

INTRODUCTION

Film-boiling heat transfer in pool systems is
a subject of considerable interest, especially in
the field of ecryogenics, since relatively low wall
temperatures will induce film boiling. A layer of
dense fluid supported by a lighter one, for film
boiling of liquid above vapor, is known to be an
inherently unstable configuration in a gravita-
tional field. At certain locations on the vapor-
liquid interface, vapor will break through and es-
cape under the influence of gravity into the bulk
liquid. Photographs of film boiling show that
these escape points are dome shaped and look like
large bubbles a&nd the surface is covered by a
cell-type structure.

Figure 1 illustrates the two-dimensional
model used in the analysis. The model consists of
a thin film of vapor between the wall and the sup-
ported liquid with the vapor domes distributed sym-
metrically over the surface of the plate. ThJ.s
model is similar to that used by Berenson [1]
however, the analysis used in this paper is dif-
ferent from that used by Berenson in that no re-
course is made to experimental results or to one-
dimensional small amplitude stability theory.

The present paper takes the point of view
that heat transfer is the dominating or driving
force for both the flow and the instabilities; that
is, the time-averaged configuration of the liquid-
vapor interface is determined by thermal energy
considerations.

]‘Nu.mbers in brackets denote references.

BASIC MODEL AND EQUATIONS

The major portion of the heat transport to a
unit cell (see Fig. 1) is assumed to occur across
the thin vapor film. The vapor domes are consid-
ered so thick that essentially no heat is conducted
into them. Physically, their function is to act as
hydrodynamic sinks into which the generated vapor
is dumped. The assumed symmetrical distribution of
these sinks implies that the velocity field in the
thin film is radially symmetric. The model pro-
posed assumes that there is some time-averaged or
ensemble-averaged contiguration of the system,
where all velocity, pressure, and temperature
fields are at steady state and that this statisti-
cally idealized configuration represents the aver-
age behavior of the actual system.

The heat-transfer coefficient can be obtained
by solving the momentum and thermal energy equa-
tions for flow and heat transport in the thin annu-
lar vapor film belonging to a single cell. In or-
der to solve the momentum equations the inertia
terms in the Navier-Stokes equation are considered
negligible. This assumption can be justified on
the grounds that the small thickness of the film
prevents the buildup of sizeable velocities. Addi-
tional support is given to this assumption by
noting in [2 and 3], which consider the Leiden-
frost £ilm boiling of drops, that the difference
between the solutions obtained by retaining the
inertia terms and by dropping them is shown to be
negligible. In addition, the physical properties
are assumed constant (but evaluated at the film
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temperature); radiation and radial temperature
gradients in the energy relations are assumed neg-
ligible.

For the assumptions noted, the governing dif-
ferential equations in cylindrical coordinates are
as follows:

Momentum:
OP d*w 1du u %
O= B3 +* ar2+r8r-r2+azz )
oP % 19w . o%w
0= g, L +p[(&¥, 2, oW
€e dz dr? * r or * 322 (2)
Continuity:
du . u , ow
or * r * dz ° (3)
Energy:
Jr d%p
v 'a—z =ao— (1)

The attendant boundary conditions are as fol-
lows:
(a) At the wall, z = 0. The velocity of the
vapor is zero:
u(r,0) = w(r,0) =0 (5)

The temperature of the wall is at a specified con-
stant value:

(r,0) = T, (6)
(b) At the liquid-vapor interface,
z =0
The radial velocity vanishes:
u(r,8) = 0 (7)
The normal velocity has some constant value depen-

dent on both momentum and energy considerations,
and the surface is at the saturation temperature:

w(r,d) = wg = constant

(r,d) = Tg (8)

Since the bulk 1liquid is assumed to be at the satu-
ration temperature Tg, no heat is conducted into
the bulk 1liquid. The momentum and energy equations
are coupled at the interface by a balance of latent
heat release and heat conduction through the vapor
film to the evaporating surface:

oT
k(5;> = phvg (9)
Z=5

A static force balance requires that the average
pressure of the vapor over the annular interface be
equal to the system pressure Ps at the flat por-
tion of the liquid-vapor interface, as shown in Fig-
ure 1:

)
2n [ P(r,8)r ar = nPS(Rg - Ri) (10)
1

One further assumption is made about the pressure
field in the next section to make the problem de-
terminate.

(c¢) Also, from radial symmetry,

u(Rg,z) = 0 (1)

METHOD OF SOLUTION

A solution flow chart of the entire analysis
is presented in Figure 2. 'This chart contains the
overall logic of the analysis and depicts how each
subproblem ties in with the final results. Refer-
ence to this chart after reading each subproblem
section will aid in understanding the analysis.

Stream Function

The two-dimensional axisymmetric equations of
motion with inertia terms neglected, often referred
to as the "creeping motion" equations, are handled
most easily by use of the stream function V¢ de-
fined by

~19¥
v =13 (12)
R (13)
r or

The continuity equation is identically satisfied by
these definitions. The momentum equations become

v =0 (14)

where E2 1is the operator
gg=-2__1° .2 (15)

Solving Equation (14) for this problem, by
separation of variables, results in

Clr
v=|5—+C; (AO + Az + Az 4 A5z3) (18)

Substituting ¥ into Equations (12) and (13)
and applying the boundary conditions (Egs. (5),
(7), and (8)) result in the following expressions
for the velocity components:

W = ﬁz(z3 - % Bzz) (17)
o %
u=_§;Lr--r— (zz-'ﬁz) (18)

where B 1is a real number and, at this point,
completely arbitrary.

Pressure Function
TIEAbUIE runction

The velocity expressions (Egqs. (17) and (18))
can be substituted into the Navier-Stokes equations
to obtain

9P _ 3i 2(2z - B) (19)
dz 8
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3 R2
OP 3 2. .0
dr g B\ r (z0)

These expressions can be integrated, subject to
the boundary condition

2
P(R,8) = B, - R (p, - o) -g; + ﬁg (21)

to yield as a final expression for the pressure

2 2

RS - 1
201 2 ). - £
= + RO 1n N Rl(p1 0) e,

2
3
R—Z + _55— (22 - 82)  (22)

A derivation of Equation (21) appears in [1].
It suffices to say that the pressure in the dome is
slightly less than the pressure Pg at the liquid-
vapor interface. This difference is due to the
difference in static head corrected for surface
tension and curvature.

In order to determine the constant Bz , the
pressure function (Eq. (22)) is inserted into the
force balance (Eq. (9)), which when integrated
gives

2

3 g p(1-r8) Rl -T)

Ryle, - ) z T

g
pe = - — = 5 (23)
3K, 1-ft (1-£8)° int
8 z 2

where f

A criterion for evaluating R,
and Ry w1]_} be postulated in the optimum config-
uration section.

One of the main results of this analysis is
that there is a unique relation between the rate
of evaporation necessary to support the liquid and
the thickness of the gap. This relation is ob-
tained by substituting z = & into Equation (17):

Wy = - % 5253 (24)

Euergy Eguation

Integrsting Equation (4) subject to the bound-
ary conditions of fixed temperatures Ty and Ts
at both the wall and the interface, respectively,
yields the general solution (as differentiation

will verify)
. #() 4
w
/ o
0

2
T(z) - T, /0'
R x
[ owon| ] e
0 0

where x and y are dumnmy variables.

The interface energy balance is obtained by
combining Equations (9), (24), and the first deriv-
ative of Equation (25) evaluated at 2z = &:

(25)

L meme /m
_ PM°B

5 — = (26)
/dxe,q,/_iL

Substituting for w from Equation (17), expanding
the exponential function, integrating each term,
neglecting terms of order &° and higher, and
solving for the gap thickness gives

2x(T,, —Ts) 1

—_— (27)
2 s
pB (?\ + 5 CPAT)

Heat-Transfer Coefficient

Once the gap thickness is known, it is a rela-
tively simple matter to compute the heat-transfer
coefficient, which is defined by

2| 2=0

= T 5 (o)

where hgnn 1is the local heat-transfer coefficient
based on the annular area surrounding the dome.

The heat-transfer coefficient of interest, however,
is based on the total area of the plate. If heat
transfer in the dome itself is neglected, then
h.ey3, the heat-transfer coefficient based on the
total area of a cell, is related to hypy by

beell = Banm 3 —— Aa.nn =
Acell

hynn(1 - £2) (29)

Employlng the first derivative of Equation (25) at

= 0, Equations (27), (28), and (29), and neglect-
1ng terms of %° eand higher results in the follow-
ing heat-transfer coefficient:

. 1/sa
Bee11 = ———2‘(‘;: f_‘zgs) -1 (50
where
A e 7\<1 + %% ¢ AT) (31)

This expression for the modified latent heat of
vaporization was found by repeated application of
the binomial theorem, while assuming that CPAT/7\
was small.

OPTIMUM CONFIGURATTON OF LIQUID-VAPOR INTERFACE

It will be shown in this section that there
is an upper limit to the rate of heat transfer to
a unit cell; that is, there exist "optimum" values
(from the point of view of maximum heat transport)
of the radii and R;, because very large
cells and very small cells are incapable of maxi-
mizing the heat transport. The heat transport to
the entire system will be maximized if



ahcell - ahcell _ ahcell o (32)
SR, Ryof of
Bg Bo Bg
and
ahcelg(Ro,Rl) = ahceél(Ro;f) ) _g_BE co (33)
RO Rl o £ RO hid

(These expressions were checked to insure that they
did not lead to a minimum or a saddle point.) Con-
sider Fquation (33) first. Taking the derivative
of Bz, given by Equation (23), with respect to Ry
setting this equal to zero, and solving for Ry
yield

. 1/2

o

Ry= |6 —=_ L (34)
glo; - o) 42

By substituting the value of Ry (Eq. (34))

into the expression for p2 (Eq. (23)) the heat-
transfer coefficient given by Equation (30) becomes

1/4
*
b _ K°N'pg(p; - p)
cell ~ “(Tw - Ts)l
1/4
-1 2(1 - fo
X -37£ f (l f ) (1- fZ) (35)
242 4
3(6) 1-£8)" 1-¢% 1 f
€ 8 2
where
1/2
8co
1= |——— 36
[g(pz - p)} (36)

The derivative of h,eyy with respect to ¢,
which was indicated by Equation (32), gives a com-
plicated transcendental equation for the optimum
value of f. It is much simpler to obtain the max-
imum value of hge)] numerically. The optimum
value was found numerically to be

fopt = 0-673 (37)
Thus, if Equation (37) is substituted into Equa-

tion (35), the maximum value of the heat-transfer
coefficient consistent with the proposed model is

(38)

The optimum cell radius from Equation (34) is
Ry = 3.64 1 (39)

and the optimum dome radius from Equation (37) is
Ry = 2.45 1 (40)

while the value of g2 is

B® = 0.4716 ¢ = (41)

In the top view of the cellular model (Fig.
1(a)), small curved triangular regions exist on the
plate that were not compensated for in the analy-
sis. These curved triangular patches must be taken
into account in order to evaluate the total heat-
transfer rate. Since there are six triangular
patches in contact with a single cell and three
cells bordering each patch, the additional area
attributed to a single cell is twice the area of a
triangular patch. Draving an equilateral triangle
through the centers of three adjacent cells and
evaluating the areas of the enclosed circular seg-
ments readily shows that the area of the triasngular
patch Ap 1s given by

e

The assumption is made that the local heat-transfer
coefficient in the triangular patch reglon is the
same as the heat-transfer coefficient in the annu-
lar region surrounding a vapor dome. This assump-
tion is based on the fact that the film thickness
under the triangular patch will be equal to the
f£ilm thickness under the annular area. Therefore,

Qot = hza.nn(Aa.nn + 2AA)M = htot(Acell * ZAA)AT (¢3)

Solving Equation (43) for hy.: and combining the
result with Equations (29) and (42) yield

A + 2A A
hiot = |om 2 cell hee1l (44)
Ace1n * 2AA Aann
The area ratios are evaluated from Equations (37)
and (42); consequently, the heat-transfer coef-

ficient (Eq. (38)) corrected for the triangular
patches becomes

1/4a

*
KON eg(py - p)

(T, - T (45)

hyor = 0-410

COMPARTSON OF THEORETICAL AND EXPERTMENTAL RESULTS

Equation (45) is identical in form to an ex-
perimentally confirmed expression proposed by Ber-
enson [1]. The only differences between the two
results are the value of the prefactor constant
and the definition of the modified latent heat of
vaporization, but the lower value of the prefactor
constant in the present results is compensated for
by a higher modified latent heat, as shown in the
following table:

Parameter Berenson [1] Present results

Prefactor constant 0.425 0.410

Modified latent [ c
heat of vapori-  |M1 + 0.5 Eo )\1+§—#
A 20
zgtion
In Berenson's work, an empirical expression
vwas used for the diameter of the dome. From a
series of high-speed motion pictures of film




boiling of n-pentane and carbon tetrachloride, the
diameters of the vapor domes that had just departed
or were just about to depart were measured at var-
ious heat fluxes. This characteristic dome diam-
eter was correlated by the equation

1/2
8c0
= . i
Dp = 4.7 [:E(EL——_—B-)-] 10 percent (46)

This value is very close to the optimum vapor dome
diameter given by Equation (40); namely,

8. 1/
D, = 4.90 | ——r
[g(oz - o)]

DISCUSSION OF RESULTS

(a7)

The formulation of the film boiling process in
terms of a maximization principle used herein is a
specific instance of what is called a "generalized
optimal boundary value process." Krzywoblocki in a
recent work [4] has formulated a very general
statement of this kind of problem. In other words,
all boundary value problems can be looked upon as
control problems. The boundary conditions are the
controls. The optimal boundary value problem is to
select from all admissible boundary conditions a
set for which some functional assumes an extreme
(maximum or minimum) value. It is to be emphasized
that the shape of the boundary is a boundary condi-
tion. Apparently, certain kinds of physical situa-
tions are naturally optimal boundary value proces-
ses. Krzywoblocki [4] gives some examples of this
natural class of optimal or extremum processes, one
of them being the dynamics of a liquid enclosed in
a partly filled tank under conditions of zero
gravity. Here, the unknown boundary conditions
(distribution of vapor and liquid) can be deter-
mined statistically by a variational principle.

In the film boiling problem, since the vapor-
liquid boundary is flexible, it is conceptually
possible for the vapor liquid boundary to adjust
itself to maximize heat transfer. 1In terms of the
foregoing nomenclature, a generalized postulate on
film boiling is proposed: Film boiling on a hori-
zontal surface is an optimal boundary value process
vwhere the functional to be maximized is the total
rate of heat transfer. Of all the possible con-
figurations of the vapor-liquid interface, that one
vhich maximizes the energy transport is realized.

The final Jjustification for the postulate is
that results employing it are consistent with ex-
perimental data, as shown in the preceding section
of this report; however, the applicability of a
maximum principle may even transcend this particu-
lar application to film boiling. 1In [5] for ex-
ample, Malkus advanced a novel theory on the nature
of turbulent free convection. He proposed that in
thermal turbulence the flow adjusts itself in such
a way as to transfer the maximum amount of heat
compatible with the boundary conditions. Without
introdueing experimental constants, a reasonably
accurate prediction of the mean velocity distribu-
tion for the turbulent flow was achieved. Other
papers by Malkus [6 and 7] which treat finite-
amplitude cellular convection and a theory of shear
turbulence, respectively, also employ a maximiza-
tion postulate. In addition, Zuber [8] has taken
the Malkus theory of turbulent free convection as a
basis for a general model of nucleate boiling.

In the analysis it was tactily assumed that
film boiling was fully established. The follow-
ing question may arise: since nucleate boiling is
& much more efficient process than film boiling and
if nature is attempting to maximize the heat trans-
fer, why is the heat-transfer rate degraded at some
critical temperature difference (burnout)? Appar-
ently, these critical transition points must be
looked upon as constraints. The variations of
physical properties with temperature and pressure
are thermodynamic constraints that always exist.
Two examples illustrating how thermodynamic con-
straints determine what heat-transfer regime will
exist are as follows:

(a) Above a certain wall temperature a
liquid may be unable to wet the wall, which
makes nucleate boiling impossible.

(b) Above the thermodynamic critical pres-
sure of a fluid, no boiling can occur.

If Zuber's theory [8] of boiling with the use
of the Malkus model of turbulent free convection is
correct, then a general statement on boiling pro-
cesses can be formulated: Boiling heat transfer,
both nucleate and film, is an attempt by nature to
maximize the rate of heat transfer into the system,
subject to the general constraints imposed by ther-
modynamics and hydrodynamics.

Which regime of boiling, nucleate or film,
actually obtains in a given situation cannot be
predicted from such a general postulate, but must
be regarded as calculable from the general con-
straints which are operating. However, given a
regime and & choice among many alternatives (tur-
bulence, cell distribution, ete.), nature will home
in on that state of the system which maximizes the
energy transport.

On a philosophical basis, why is nature so
obliging in meximizing the rate of heat transfer?
The explanation lies in entropy considerations. 1In
essence, everything seid about maximizing the
energy transfer can be recast in terms of an en-
tropy production; that is, if the rate of heat
transfer is being maximized, the rate of entropy
production is also being meximized. If the hot
wall is considered a heat reservoir at temperature
Ty and the bulk fluid is considered a heat sink at
temperature Tg, the rate of entropy production of
the universe is then

where Q 1is the total rate of heat transfer from
the wall. Clearly, for fixed Ty and Tg, the
rate of entropy production of the universe will be
a maximum if the heat transport is a maximum.

The entropy formulation is more basic and will
probably comprehend more physical situations than
the energy formulation. The generalization that
suggests itself, then, is that in all chaotic-type
situations the average behavior of the system is
such that the entropy production is maximized.

This generalization is the macroscopic analog of
the Second Law of Thermodynamics. Clearly, the im-
portance of this nonequilibrium thermodynamic pos-
tulate is obvious, and its general validity war-
rants further study and investigation.

CONCLUSTONS

A theoretical analysis of pool film boiling
from a horizontal surface yielded the following:



1. A theoretical expression for the heat- a  thermal diffusivity, k/pCp, em/sec?
transfer coefficient that agrees within 52 .
. iy constant given by Eq. (41), 1/(sq cm)(sec)
4 percent of an experimentally confirmed ex- 5 thicknessgof vapi:r gﬂ;’ l;u /
pression proposed by Berenson A latent heat of vaporization, cal/g
2. An optimum average vapor dome (bubble) A modified latent heat of vaporization, cal/g

radius that agrees within 5 percent of ex-
perimentally observed breal(:off diameters
3. An optimum cell diameter (wavelength) which : X
15 intermediate between the critical and the Py liquid density, g/cu cm
most dangerous vwavelength predicted by one- o surface tension, dyne/cm
dimensional small-amplitude hydrodynamic ¥ 8tream function, cu cm/sec
stability theory
In addition, a tentative nonequilibrium ther-
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(a) Top view: Showing symmetrical distribution of cells
on surface.
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e view: Showing direction of vapor flow into domes,
axial coordinate 2, radial coordinate r, cell radius R()
dome radius R), and gap thickness 5.

Figure 1. - Idealized cellular model for film boiling on horizontal surface.
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